Rayat Shikshan Sanstha's Yashavantrao Chavan Institute of Science, Satara(Autonomous)

Lead College

Of

Karmaveer Bhaurao Patil University, Satara

Syllabus for Master of Science

Part-II

Organic Chemistry

Syllabus to be implemented w.e.f.June 2024

As per NEP-2020

1. Title: Organic Chemistry

2. Year of Implementation:

The syllabus will be implemented from June, 2024 onwards.

3. Preamble:

This syllabus is framed to give advanced knowledge of Chemistry to post graduate students at first year of two years of M.Sc. degree course. The goal of the syllabus is to make the study of chemistry, interesting and encouraging to the students for higher studies including research. The new syllabus is based on a basic and applied approach with vigor and depth. At the same time precaution is taken to make the syllabus comparable to the syllabi of other universities and the needs of industries and research. The syllabus is prepared after discussion at length with number of faculty members of the subject and experts from industries and research fields. The units of the syllabus are well defined, taking in to consideration the level and capacity of students

Credit Framework for M.SC.II Structure of Course M.Sc. Part II Semester III

Level	Semester	Course Code	Course Title	No. of	Credits 4
				Lectures per	
				week	
		Discipline Specif	ic Course (DSC)(Mandatory)		
		MOCT-531	Organic Reaction Mechanism	4	4
		MOCT-532	Advanced Spectroscopic	4	4
			Methods		
		MOCT-533	Advanced Organic Synthesis	4	4
		Discipline Specif	ic Elective (Choose any one amon	ng two)	
6.5		MOCT-534 E-I	Drugs And Heterocycles E-I	2	2
	III	MOCT-534 E-II	Drugs And Heterocycles E-II		
		MOCT-535	Research Project	12	6
		MOCT-536	Lab III(Based on MOCT 531,	4	2
			532,and 533)		
		Total	•	·	22

Structure of Course M.Sc. Part II Semester IV

Level	Semester	Course Code	Course Title	No. of	Credits 4
				Lectures per	
				week	
		Discipline Specif	ic Course (DSC)(Mandatory)		
		MOCT-541	Theoretical Organic Chemistry	4	4
		MOCT-542	Stereochemistry	4	4
		MOCT-543	Chemistry Of Natural Products	4	4
		Discipline Specif	ic Elective (Choose any one amor	ng two)	
		MOCT-544 E-I	Applied Organic Chemistry	4	4
		MOCT-544 E-II	Environmental Chemistry		
6.5	IV	MOCT 545	On Job Training (OIT)	0	1
		MOC1-343	On Job Training (OJT)	0	4
		MOCT-546	Lab IV(Based on MOCT 541,	4	2
			542,and 543)		
		Total		•	22

Level 6.5

M.Sc.Part–II, Semester III Discipline Specific Course (DSC)(Mandatory)

Credit	ts 4	MOCT 531: ORGANIC REACTION MECHANISM	Hours
0			60
Course	Obj	jectives: Student should be able to:-	
1)	Acq	quire knowledge of Kinetic and non-Kinetic methods of reaction mechanism	1.
2)	Und	derstand the pericyclic reactions and their mechanism.	
3)	Lea	arn to predict the product of name of reactions.	
4)	Stuc	dy the concepts of photochemistry.	
Unit I	No	Title and Syllabus	Hours
		·	allotted
I		Methods of determining reaction mechanism	15
		A)Kinetic Methods:	
		1.A.1 Order and Molecularity	
		1.A.2 Methods to determine reaction rates	
		1.A.3 Types of reactions: 1 st , 2 nd and 3 nd order reactions	
		I.A.4 Reversible, Consecutive and Parallel reactions	
		1.A.5 Energy of Activation	
		I.A.6 Entropy of Activation	
		1.A.7 Effect of Ionic strength	
		1.A.8 Solvent effect and Kinetic isotopic effect.	
		B)Non-Kinetic Methods:	
		1.B.1 Identification of reaction products.	
		1.B.2 Testing of the possible intermediates.	
		1.B.3 Trapping of the intermediates.	
		1.B.4 Isotopic labeling.	
		1.B.5 Reaction catalysis.	
		1.B.6 Cross- over experiments.	
		1.B.7 Stereochemical studies and Use of physical properties.	
		1.B.8 Hammett and Taft equations	
II		Pericyclic reactions	15
		2.1.Molecular orbital symmetry.	
		2.2.Frontier orbital of ethylene, 1,3- butadiene, 1,3,5-hexatriene	
		And allyl system.	
		2.3.Classification of pericyclic reaction.	
		2.4.Wood-ward Hoffman correlation diagrams.	
		2.5.FMO and PMO approach.	
		2.6.Electrocyclic reactions, conrotatory and disrotatary motions	
		4n, $4n+2$ and allyl systems.	
		2.7.Cycloaddition, and supra and antara facial additions, 4n and	
		4n+2systems, 2+2 additions of ketenes, 1,3-dipolar	
		cycloaddition.	
		2.8.Chelotropic reactions.	
		2.9.Sigmatropic rearrangement, supra and antarafacial shifts of	
		H, Sigmatropic shifts involving carbon moieties,(3,3) and	
		(5,5) sigmatropic rearrangement Claisen and Cope and	
		Aza Cope rearrangement, Ene reaction.	

III	Name Reactions and Rearrangement	15
	Mechanism, Stereochemistry, migratory aptitude, (application using	
	complicated example):	
	3.A.1. Dienone – phenol, Favorskii, Baeyer-Villiger, Petasis reaction,	
	Wolff, Smile's, Mukaiyama esterification, Mitsunobu reaction,	
	Baylis Hillman reaction, Wacker process, Eschenmoser	
	fragmentation, Julia olefination.	
	3.A.2.Barton and Shapiro reaction,Hoffmann – Loffler-Fretag	
	ReactionPeterson synthesis	
IV	Photochemistry	15
	4.1.Effect of light intensity on the rate of photochemical reactions.	
	4.2. Types of photochemical reactions, photo dissociation gas phase	
	Photolysis.	
	4.3.Photochemistry of alkynes.	
	4.4.Intermolecular reactions of the olefinic bonds.	
	4.5.Geometrical isomerism.	
	4.6.Cyclisation reactions.	
	4.7.Rearrangements of 1.4 and 1.5-dienes.	
	4.8.Photochemistry of carbonyl compounds, intramolecular	
	reactions of carbonyl compounds, saturated cyclic and acyclic	
	α , β -unsaturated compounds.	
	4.9.Cvclohexadienones	
	4.10. Intermolecular cycloaddition reactions, dimerisation and	
	Oxitane formation.	
	4 11 Photochemistry of aromatic compounds, photo fries reactions	
	Of anilides, photo fries rearrangements.	
	4.12 Singlet molecular oxygen reactions	
	4 13 Photochemistry of vision	
Course	• Outcomes: After completion of course students will be able to	
1) Under	stand kinetic and non-kinetic methods of reaction mechanism	
2) Dama	stand kinetic and hon-kinetic methods of reaction mechanism.	
2) Demo	nstratetne pericyclic reactions by models of molecular orbitals.	
3) Predic	t stereochemistry, migratory aptitude of different reactions.	
4) Solve	problems related to photochemical reactions.	
Deference		
1. Peter S	ykes. A guide book to mechanism in organic chemistry. (orient-Longmans)	Unit-I:36-
42.1	<i>Jerse, et ganne et en en en engenne en engenne j</i> , (etter <i>et g</i> enne)	, [
2. Michae	el B.Smith.JerryMarch.March's Advanced Organic Chemistry(New Jersey-Jol	hn wilev and
sons)[[Jnit-I:301]	·····
3. Jie Jacl	Li,Name Reaction fourth edition(USA-Springer),[Unit-III: 12, 30, 190, 206,	214, 309, 365,
379, 43	36,564,590)	, , ,
4. N.J. U1	rro, Molecular photochemistry, W. A. Benjamin, [Unit IV].	
5. B. S. C	ould, Mechanism and structure in Organic Chemistry, (Holt Reinhart winsto	on), [Unit-
I:All be	pok]	// E
6. Clavde	n, Greeves, Warren, Organic chemistry 1 st edition. [Unit-I :319.Unit-II: 9	914, 922, 929.
934, 94	16,947),Unit-III:984,988,990,992]	
1		

Credit	4 MOCT 532: ADVANCED SPECTROSCOPIC METHODS	Hours	
Course	Dbjectives: Student will able to:-	00	
1)	Understand the basic principles of UV and IR spectroscopy.		
2)	Recall the basic concepts in ¹ H NMR spectroscopy.		
3)	Acquire the principal and basic concepts of mass spectroscopy.		
4)	Learn the structure determination of organic compounds using UV, IR, NI spectroscopic data.	MR and M	Aass

Unit No	Title and Syllabus	
Ŧ		allotted
l	Ultraviolet Spectroscopy and IR Spectroscopy A) Ultraviolet Spectroscopy III (Spectroscopy)	15
	A) Offraviolet Spectroscopy 1 A 1 Woodward- Fisher rules for conjugated dienes and carbonyl	
	compounds	
	1 A 2 Calculation of λ max	
	1 A 3 Ultraviolet spectra of aromatic and beterocyclic compounds	
	1 A 4 Steric effect in hinhenvls	
	D) D Speetrogeopy	
	b) IK Spectroscopy	
	1.B.1. Characteristic vibrational frequencies of alkanes; alkenes;	
	alkynes; aromatic compounds; alcohols; ethers; phenols and	
	amines.	
	1.B.2.Detailed study of vibrational frequencies of carbonyl	
	Compounds[ketones; aldehydes; esters; amides; acids;	
	anhydrides; lactones; lactams and conjugated carbonyl	
	compounds]	
	1.B.3.Effect of hydrogen bonding and solvent effect on vibrational	
	frequencies	
	1. B.4. Overtones; combination bands and Fermi resonance.	
	1.B.5.FT-IR of gaseous; solids and polymeric materials.	
II	NMR Spectroscopy	15
	2.1.General introduction and definition.	
	2.2.Chemical shift; spin –spin interaction; shielding mechanism of	
	Measurement chemical shift values and correlation for protons bonded	
	to carbons[aliphatic; olefinic; aldehydic and aromatic] and other	
	nuclei [alcohols; phenols; enols; acids; ammines; amides and	
	mercaptans]; chemical exchange; effect of deuteration; complex spin-	
	spectral: virtual coupling. Stereochemistry: hindered rotation:	
	2.3 Karplus curve variation of coupling constant with dihedral	
	angle. Simplification of complex spectra: nuclear magnetic	
	double resonance; shift reagent; solvent effect.	

	2.4.Fourier transform technique, nuclear Overhauserer effect	
	[NOE]Resonance of other nuclei-F;P. INEPT and INADEQUAT	
III	Mass Spectrometry	15
	3.1.Introduction	
	3.2. Various methods of ionization (EI, CI, FD, FAD and MALDI)	
	3.3.Factors affecting on fragmentation	
	3.4.Analyzers (Magnetic sector mass analyzers, Quadrupole mass	
	analyser, Time of Flight mass analyser)	
	3.5.Detectors	
	3.6.Ion abundance	
	3.7.Mass spectral fragmentation of organic compounds, common	
	functional groups	
	3.8.Molecular ion peak, metastable peak, McLafferty	
	rearrangement,	
	3.9.Nitrogen rule.	
	3.10. High resolution mass spectrometry.	
	3.11. Examples of mass spectral fragmentation of organic	
	Compounds With respect to their structure determination.	
IV	Carbon-13 NMR Spectroscopy & combined Spectral Problems	15
	4.1.General considerations; chemical shift [aliphatic, olefinic, alkyne,	
	aromatic, heteroaromatic and carbonyl compounds]	
	4.2.Problems associated with ¹³ C, FT-NMR, proton decoupled off	
	resonance.Introduction to two dimentional spectroscopic methods,	
	COSY,NOESY,HETCOR	
	4.3. Structural problems based on combined spectroscopic	
	techniques (including reaction sequences)	
Course O	utcome: Student should able to	
1. Un	derstand operating system and problems based on UV and IR spectroscopy.	
2. Exp	plain NMR peaks for organic compounds.	
3. Dei	monstrate working of Mass spectrometry.	
4. Sol	ve combined problems based on IR, NMR, ¹³ C Spectroscopy and Mass spectr	ometry.
REFERE	NCE BOOKS:	
1. V.N	M. Parikh, Application spectroscopy of organic molecules. (Mehata) [All unit	s]
2. D.	L. Pavia, Lampman, Kriz, Vyvyan Spectroscopy, Indian edition [Unit-I: 394,	409, 31-
35,	43,47,52-73. Unit-II: 420,421,435. Unit-III: 105-176,359.Unit-IV: 177-231]	
2 51	verstein and Basslar. Spectroscopic identification of organic compounds [Uni	t_I·87_87

- Unit-II 3,10,17. Unit-III 127-203. Unit-IV 217,278.]
- 4. P.S. Kalsi Spectroscope of organic compounds (New age publisher) [All units]
- 5. W. Kemp, Organic Spectroscopy ELBS [Unit-I: 259,261,26,58-74. Unit-II: 288,289,307. Unit-III:135,111. Unit-IV:224.]
- 6. Clayden, Greeves, Warren, Wothers, Organic Chemistry [Unit-I: 65,72,169,367. Unit-II: 50,72. Unit-III: 72,243.

Credits4	MOCT 533: ADVANCED ORGANIC SYNTHESIS	Hours 60
Course Obj	jectives: Student will able to-	
1) Under	stand green techniques in synthetic organic chemistry.	
2) Learn	preparation of synthetic reagents and their applications in organic synthesi	is.

- 3) Explain the metals and nonmetals and their applications in organic synthesis.
- 4) Study the logical thinking and imagination for disconnection.

Unit No	Title and Syllabus	
T		
1	Green chemistry	15
	A.Introduction basic principles of green chemistry.	
	1.A.1. Designing a green synthesis: Green starting materials, green	
	reagents, green solvents and reaction conditions, green	
	catalysts.	
	1.A.2. Use of the following in green synthesis with suitable examples:	
	Green reagents: dimethyl carbonate, polymer supported reagents.	
	Green catalysts: Acid catalysts, oxidation catalysts & basic	
	catalysts.	
	B. Green solvents:	
	1.B.1.Ionic liquids: Synthesis of ionic liquids Applications in alkylation,	
	hydroformylations, expoxidations, synthesis of ethers, Friedel-craft	
	reactions, Diels-Alder reactions, Knoevenagel condensations, Wittig	
	reactions, Phase transfer catalyst, Synthesis, applications.	
	1.C.1. Microwave assisted synthesis: reactions in water, reactions in	
	inorganic solvents, solvent free reactions.	
	1.D.1. Ultrasound assisted reactions.	
	1.E.1.Comparison of traditional processes versus green processes	
	in the Synthesis.	
II	Reagents and Their Application in synthesis.	15
	2.1.Complex metal hydrides	
	2.2.Sodium cyanoborohydride	
	2.3.lithium diisopropyl amide (LDA)	
	2.4. Trimethylsilyl iodide	
	2.5.Ozone	
	2.6.Phase transfer catalyst	
	2.7. woodward-Prevost hydroxylation	
	2.8.Dess-Martin periodinane	
	2.7. renouic aciu anu iouoisobenzyiDiacetate	
	2.10. Grub s catarysts.	

III	Applications of metals and non-metals in organic synthesis	15
	3.1.Pd (Heck arylation, carboxylation)	
	3.2.Allylic activation	
	3.3.Still coupling	
	3.4.Sonogoshira reaction and their importance	
	3.5.Kumada coupling	
	3.6.Neigishi coupling)	
	3.7.Hg, Cu, Sn, Pt, Rh	
IV	Disconnection approach	15
	A. Protection and deprotection of the following functional groups:	
	Hydroxyl, carbonyl, amino and carboxyl with applications.	
	B. An introduction to Synthons and synthetic equivalents.	
	4.B.1 Disconnection approach.	
	4.B.2 Functional group interconversions.	
	4.B.3 One group C-X and two group disconnections in1, 2; 1,3, 1, 4 &	
	1, 5-difunctional compounds.	
	4.B.4 Retro - synthesis of alkene, acetylenes and aliphatic nitro Alcohols	
	and carbonyl compounds, amines.	
	4.B.5 Importance of the Order of events in organic synthesis	
	4.B.6 Chemo selectivity, Regioselectivity, Diels-Alder reaction,	
	Michael addition and Robinson annulation.	
	4.B.7 Retrosynthesis of aromatic heterocycles, 3, 4, 5 & 6 membered	
	carbocyclic and heterocyclic rings	
	4.B.8 Reversal of polarity (Umpolung).	
Course Out	tcomes: Student should be able to: -	
1. I	mplements the green synthetic technique.	
2. I	Demonstrate practical applications of the reagents.	
3. U	Understand the applications of metals and nonmetals in organic synthesis.	
4.	Solve the problems based on retrosynthetic approach.	
Referen	nces: -	
1.	S. Warren, Designing of organic synthesis [Unit IV]	
2.	Carruthres, Some modern methods of organic synthesis, [Unit-II:443,	378-392.Unit-
	III:75,89,365].	
3.	H.O. House, Modern synthetic reaction. [Unit II,III]	
4.	Fieser&Fieser, Reagent in organic synthesis. [Unit II, III].	
5.	R.O.C. Norman, Principle of organic synthesis, [Unit II,III].	
6.	P. E. Realand, Organic synthesis, [Unit I].	
7.	Stone & West, Advances in organometallic Chemistry.[Unit III]	

Discipline Specific Elective(**DSE**)(*Elective*)

Credits 2	MOCT-534 E-1: DRUGS AND HETEROCYCLES-I	Hours 30
Course Obj	ectives:Student will able to: -	
1.	Learn to develop approach for drug designing of a molecule.	
2.	Understand the synthesis of five, six, membered etc. heterocycles w	ith respect to
	mechanistic approach. And study synthesis of fused heterocyclic comp	ounds and six
	membered heterocycles.	
Unit No	Title and Syllabus	Hours
Chitro		allotted
I	Drug discovery and design	15
	A.Development of new drugs:	
	1.A.1 Procedures followed in drug design	
	1.A.2 Concepts of prodrugs and soft drugs. Theories of drug	
	Activity, Quantitative structure activity relationship.	
	1.A.3 History and development of QSAR.	
	1.A.4 Concepts of drug receptors	
	B.Synthesis of following drugs:	
	1.B.1 Study of Antibiotics Preparation of semi synthetic penicillin,	
	conversion of penicillin into cephalosporin, general account of	
	tetracycline & macrocyclic antibiotics (no synthesis).	
	C. Synthesis of Following Drugs:	
	4.C.1 Antimalerials: Trimethoprim.	
	4.C.2 Analgesic & Antipyretics: Paracetamol, Meperidine,	
	methadone, Aminopyrine.	
	4.C.3 Anti-inflammatory: Oxyphenylbutazone, Diclophenac,	
	Indomethacin.	
	4.C.4 Antitubercular&antileprotic: Dapsone	
	4.C.5 Anaesthetics :Lidocaine, Thiopental	
	Heterocyclic Chemistry-I	15
	A. Introduction and Classification of Heterocycles:	
	B. Five and six membered heterocycles with two heteroatoms:	
	2.B.1 Synthesis, reactivity of following heterocyclic rings: Imidazole,	
	C Five membered Heterocycles with more than two Heterostoms	
	2 C 1 Synthesis and reactions of triazines $-1.2.3$ -triazole $1.2.4$ -	
	triazole 1.2.4-ovadiazole 1.3.4-ovadiazole 1.2.5-ovadiazole	
	D Banzafusad Hatarocyclas:	
	2 D 1 Synthesis and reactions of henzofurane henzothionhenes	
	Benzovazole Benzthiazole and Ouinoline Benzimidazole	
Course	Outcomes: Student should be able to:-	
	v the OSAR technique for drug synthesis	
2 Dom	y the QSAR technique for using synthesis.	WO
	ro atom	lwU
пеle		

References:-

- 1. A. Kar, Medicinal Chemistry, (Wiley East), [Unit I, IV]
- W. O. Foye, Principals of medicinal chemistry. [Unit I:101.Unit-IV:1033 1073– 1077 1073]
- 3. Wilson, Gisvold&Dorque, Text book of organic medical and pharmaceuticalChemistry, [Unit-I:919].
- 4. R. M. Acheson, An introduction to chemistry of heterocyclic compounds. (Interscience).Joule & , Heterocyclic chemistry, (Van Nostrand), [Unit-III: 488,545. Unit-II 449,451]
- 5. R. K. Bansal, Heterocyclic chemistry, (Wiley E), [Unit-II:400,408]
- 6. R. R. Gupta, M. Kumar and V. Gupta, Heterocyclic Chemistry, Springer Veriag, Vol-1-3, [Unit III, II].
- 7. M. H. Palamer, The structure and reactions of heterocyclic compounds, [Unit III, IV]
- 8. A. R. Katritzky, Advances in Heterocyclic chemistry. (A.P.), [Unit III, II].

Credits 2	MOCT-534 E-II: DRUGS AND HETEROCYCLES-II	Hours
		30

Course Objectives: Student will able to: -

- 1. Learn computational applications Drug design and synthesis of some important drug molecules.
- 2. Demonstrate the preparation and applications of heterocyclic compounds

		**
Unit No	Title and Syllabus	Hours
		allotted
Ι	Synthesis of Drugs	15
	1.A.1.Introduction of Drugs.	
	1.A.2.Introduction of Computational Chemistry and its role in , Synthesis	
	and in drug delivery.	
	Synthesis of Drugs:	
	1.B.1Antihistamines: Diphenylhydramine.	
	1.B.2.Tranquilizers: Diazepam, Trimeprazine.	
	1.B.3.Anti AIDS: General study	
	1.B.4.Cardiovascular: Synthesis of dilliazem, quinidine, methyldopa,	
	atenolol, oxyprenol.	
	1.B.5Anti-neoplastic drugs: Cancer chemotherapy, Synthesis of	
	mechloraethamine, cyclophosphamide, Mephalan, uracils, mustards.	
	Recent development in cancer chemotherapy. Hormones and natural	
	products.	
II	Heterocyclic Chemistry-II	15
	A. Six membered Heterocycles with one heteroatom	
	Synthesis and reactions of pyrilium salts and pyrones and their	
	comparison pyridinium and thiopyrylium salts and pyridones.	
	Synthesis and reactions of coumarins, chromones.	
Cours	se Outcomes: Student should be able to:-	
1. De	monstrate the synthesis and applications of the heterocyclic compounds with o	one
He	teroatom.	

2. Demonstrate the synhetic mechanism of drugs.

References:-

- 1. A. Kar, Medicinal Chemistry, (Wiley East), [Unit I, IV]
- 2. W. O. Foye, Principals of medicinal chemistry. [Unit I:101.Unit-IV:1033 1073-1077 1073]
- 3. Wilson, Gisvold&Dorque, Text book of organic medical and pharmaceutical chemistry, [Unit-I:919].
- 4. R.M. Acheson, An introduction to chemistry of heterocyclic compounds.(Interscience).Joule &, Heterocyclic chemistry, (Van Nostrand), [Unit-III:488,545. Unit-II 449,451]
- 5. R. K. Bansal, Heterocyclic chemistry, (Wiley E), [Unit-II:400,408]
- 6. R. R. Gupta, M. Kumar and V. Gupta, Heterocyclic Chemistry, Springer Veriag, Vol-1-3, [Unit III, II].

Credits 6	MOCT 535- Research Project	Hours
		180
	Student will undertake research in specific area of his major/core	
	with an advisory supported by teacher/faculty member. Students are	
	required to take 6 credits to research project for semester III under the	
	guidance of faculty members.	

Credit 2	Title and Syllabus	Hours 60
	MOCP-536 Organic Chemistry Practical III(Lab-III)	
	1. Qualitative Analysis	30 hrs
	Separation, purification and identification of compounds of ternary	
	mixtures using semi microanalysis, and chemical tests. (2 days for each	
	mixture, each mixture requires 6 hrs), Total 5 Mixtures will be covered	
	(A) Two step Preparations (Any Four)	
	1. Preparation of m-nitroaniline from nitrobenzene.	
	2. Preparation of Benzanilide from Benzophenone.	
	3. Preparation of Bisindole methylene by ultrasound method.	30 hrs
	4. Microwave assisted synthesis of derivatives of Barbituric acid.	
	5. Synthesis of acetanilide from aniline.	
	6. Any other suitable expt. may be added	
	B) Structure elucidation by using given spectral data as well as perform its	
Course Out	retrosynthetic analysis.	
	come: Student should be able to	
	erstand the separation method of ternary mixture by microscale technique.	
2. IIIus	strate the separation of ternary mixture.	
3. Rec	ognize the purification techniques of liquid compounds	c 1 · 1
4. Assi	gn theoretical value of "H NMR, "C NMR and Mass Spectroscopy of	f chemical
com	pounds of ternary mixture.	
References:		
1. I. Vo	gel, Textbook of Practical Organic Chemistry.	
2. Manr	a & Saunders, Practical Organic Chemistry.	
3. H. T.	Clarke, A Handbook of Quantitative & Qualitative Analysis.	

4. Blat, Organic Synthesis Collective Volumes.

M.Sc.Part-II, Semester IV

Discipline Specific Course(DSC)(Mandatory)

Credits 4	MOCT 541: Theoretical Organic Chemistry	Hours 60			
Learnii	ng Objectives: Student will able to:-				
1) Unders	Understand the aromaticity concept of non-benzoic system.				
2) Learn	earn the supra molecular chemistry with various molecules.				
3) Demor	3) Demonstrate the difference between the kinetic and thermodynamic controlled reactions with				
applica	applications				
4) Elabor	ate free radical reactions and their applications in organic synthesis				
Unit No	Title and Syllabus Hours allotted				
Ι	Molecular Orbital Theory	15			
	1.1.Aromaticity in benzenoids				
	1.2.Alternant and non-alternant hydrocarbon				
	1.3.Huckels rule				
	1.4. Energy level of pi- molecular orbital and concept of Aromaticity,				
	1.5.Calculation of energies of orbitals cyclic and acyclic systems.				
	1.6.Determination energies and stabilities of different systems				
	1.7.Calculation of charge densities PMO theory and reactivity index.				
II	Supramolecular Chemistry	15			
	2.1.Host-Guest approach				
	2.2.Chiral recognition, Ionophores				
	2.3.Crown Ether and its complexes				
	2.4.Cryptands, Micelles				
	2.5.Cyclodextrins, calixarenes				
	2.6.Annulenesand heteroannulenes				
	$2.7.FullerenceC_{60}$				
	2.8.Tropone ,tropolone azulene				
	2.9.Fulvene				
	2.10.Tropylium salts				
	2.12.Ferrocene				
	2.15.Catenanes and rotaxanes				
III	Kinetics and thermodynamic controlled reactions	15			
	3.1. Energetics of reaction, Kinetics of reaction				
	3.2. Investigation of reaction mechanism.				
	Kinetic and thermodynamic control in case of Nitration and				
	Sulphonation of naphthalene, Wittig, Enolization, Friedel-Crafts and				
	Diels Alder reactions, Addition of HCl to conjugated diene and Michel				
	addition				
IV	Free Radical Reactions	15			
	4.1.Types of free radical reactions				
	4.2. Detection by ESR				

	4.3.Fre	ee radical substitution mechanism	
	4.4. M	echanism at an aromatic substrate	
	4.5.Ne	eighboring group assistance	
	4.6.Re	activity for aliphatic and aromatic substrates at a bridgehead	
	4.7.Re	activity in attacking radicals	
	4.8.Th	e effect of solvent on reactivity.	
	4.9.Al	lylic hydrogenation (NBS),	
	4.10.	Oxidation of aldehydes to carboxylic acids,	
	4.11.	Auto oxidation	
	4.12.	Coupling of alkynes and arylation of aromatic compounds by	
		diazonium salt,	
	4.13.	Sandmeyer reaction.	
	4.14.	Free radical rearrangement	
	4.15.	Hunsdiecker reaction.	
Course Out	comes	: Student should be able to:-	
1. Im	bibe the	e MOT and the concept of aromaticity.	
2. De	monstr	ate the supra molecules with their structural explanation.	
3. So	lve pro	blems based on kinetic and thermodynamic controlled reactions.	
4. Un	derstan	nd the free radical reactions with different examples.	
DEFEDEN	CE BO	MARS.	
1. Ler	har and	Merchand, Orbital Symmetry, [Unit II, III]	
2. K. 1	B. WOC	Do ward and Hoffman, Conservation of orbital symmetry. [Unit III]	
3. Gir	isburg,	Non benzenoid aromatic compound, [Unit I, IV]	
4. E. C	ulerk, I	r ne aromane sexiet, [Unit III].	
5. Llo	ya, Cai	rbocyche non- benzenoid aromatic compounds, [Unit III]	
0. W.	B. Sm	ith, Molecular orbital methods in organic chemistry. [Unit III]	

6. W. B. Smith, Molecular orbital methods in organic chemistry. [Unit III]

Credits 4	MOCT 542: Stereochemistry	Hours 60
Course O	bjectives: Student will be able to:	
1.	Learn conformational approach to acyclic and alicyclic systems.	
2.	Understand stereochemistry of Fused and bridged rings.	
3.	Illustrate the stereochemistry of Allenes, Spiranes and Biphenyls.	
4.	Know the newer methods of stereo selective synthesis.	
Unit No	Title and Syllabus	Hours
Omena	The and Synabus	allotted
Ι	Stereochemistry of acyclic and alicyclic compounds	15
	1.A.1 Conformation and reactivity in acyclic compounds and cyclohexenes.	
	1.A.2 Stability and Reactivity of diastereo isomers. Curtin-Hammett principle .	
	B Some aspects of the stereochemistry of ring systems:	
	1.B.1.Stereoisomerism and determination of the configuration of alicyclic rings	
	1.B.2.Stability of rings and ease of rings formation	
	C.The shapes of the rings other than six membered:	
	1.C.1.Shapes of five, six, and seven membered rings.	
	1.C.2.Conformational effects In medium sized rings, Concept of 'I'	

	strain.	
II	Stereochemistry of the ring system, conformation and configuration	15
	A)Fusedand bridged rings: (8)	
	2.A.1. Fused bi cyclic ring systems: Types of fused ring systems	
	2.A.2. Cis and trans- Decalins	
	2.A.3. Perhydroanthracene	
	2.A.4. Bridged rings: Types of bridged ring systems	
	2.A.5. Nomenclature	
	2.A.6. stereo chemical restrictions	
	2.A.7. Bredt's rule.	
	B) O.R.D. and C.D.: (7)	
	2.B.1 Types of curves	
	2.B.2 Circular dichroism	
	2.B.3 Determination of the conformation and configuration	
	2.B.4 The Octant rule and axial halo ketone rule.	
тт	Stereochemistry of compounds containing no chiral carbon atoms and	15
111	diastereoisomerism (Geometrical isomerism)	15
	A) Stereochemistry of Allenes, Spiranes and Biphenyls, Assignment of	
	configuration	
	B) Configuration of diastereomers (Geometrical isomerism) based on	
	physical and chemical methods.	
IV	Newer methods of stereo selective synthesis.	15
	4.A.1. Introduction and Stereo selective and Stereospecific reactions	
	4.A.2. Enantio selective synthesis(chiral approach) reactions with hydride	
	donors, hydroboration, catalytic hydrogenation via chiral	
	Hydrazones and oxazolines, Sharpless epoxidation, Diels Alder	
	Selective synthesis, Aldol and related reactions including Cram's	
	rule and FelkinAnh rule use of calculations of optical purity and	
	enantiomeric excess.	
Course Out	comes: Student should be able to:-	
1. Show	w the ball and sticks models of conformational approach to acyclic and alicy	clic systems.
2. Dem	onstrate the circular dichroism, fused and bridged rings.	

- 3. Illustrate the stereochemistry of Allenes, Spiranes and Biphenyls.
- 4. Solve problems based on the conceptual fact of stereo selective synthesis.

References:-

- [1] E.L. Eliel, Stereochemistry of carbon compounds, [All units].
- [2] D. Nasipuri, Stereochemistry of organic compounds, [All units].
- [3] P.S. Kalsi: Stereochemistry, Conformation and Mechanism, [All units].
- [4] Carl Djerassi, Optical Rotatory Dispersion, [Unit II]
- [5] P. Crabbe : Optical Rotatory Dispersion and C.D. [Unit II].

Credits	MOCT 543: Chemistry of Natural Products	
4		Hours 60
Course	Objectives:Student will be able to:-	
1. Und	erstand the naturally occurring organic molecules.	
2. Stud	y synthesis and stereochemistry of alkaloid molecules	
3. Lear	n the synthesis of steroids, terpenoids, prostaglandins, etc.	
4. Illus	trate the natural product through a biogenesis approach.	
Unit No	Title and Syllabus	Hours allotted
Ι	Introduction of natural products and Terpenoids	15
	1.A.1 Introduction of natural products Classification and isolation methods.	
	1.A.2 Terpenoids structure, stereochemistry and synthesis of carvone, abietic acid, zingiberene, α -santonin, β -cuparenone and β - caryophyllene.	
II	Alkaloids and Prostaglandins	15
	 2.A1. Alkaloids (10) Structure, stereochemistry, synthesis and biosynthesis of the following: Morphine, Reserpine and Epidrin. 2.A2. Prostaglandins (05) Occurrence, nomenclature, classification, biogenesis and physiological effects, Synthesis of PGE2 and PGF2. 	
III	Steroids	15
	 3.1.Occurrence 3.2.Nomenclature 3.3.Basic skeleton 3.4.Diels hydrocarbon 3.5.Study of the following: hormones, Cholesterol, Androsterone, Testosterone, Estrone, Progesterone, Aldosterone and cortisone (only synthesis) 	
IV	Biogenesis	15
Course Out	 4.1.Terpenoids: mono, sesqui, di- and triterpenoids, cholesterol. 4.2.Alkoloids: Derived from ornithine, lysine, tyrosine, tryptophan, Pyridine, and indole type alkoloids. 4.3.Shikimate pathway– cinnamic acids, lignans, coumarins, Flavonoids, isoflavonoids and quinines 4.4.Vitamins:Synthesis and structure of biotin and vitamin B1, B2, B6: Biologicalfunctions of Vitamin B6, D and E. tcomes: Student should able to:- 	
1 Illnet	rate the extraction and purification of natural products and terpenoids	
1. must 2 Dom	onstrate the classifications, structure and synthesis of alkaloids	
3. Unde	erstand different structure, stereochemistry, synthesis and biosynthesis of st	tereoids

4. Explain classification, biogenesis and physiological effects of natural products, steroids, vitamin's etc.

References:-

- 1. Finar, Organic chemistry Vol. I and II, [All units].
- 2. Manskey and Holmes, Alkaloids [Unit I]
- 3. P. D B. Mayo, The chemistry of natural products. Simonson, Terpenes, [Unit I]
- 4. Fieser and Fieser, Steriods, [Unit III].
- 5. Peter Bernfield, The biogenesis of natural products, [Unit IV].

Credits 4	MOCT 544 E-1: Applied Organic Chemistry	Hours 60	
Course Obj	ectives: Student will be able to:-		
1. Stud	1. Study the commercial synthesis of different dyes.		
2. learn the synthesis and application of different perfumery based compounds			
3. Real	ize different types of Agrochemicals used for the pest control.		
4. Engr	oss different process of polymers synthesis.		
Unit No	Title and Syllabus	Hours	
		allotted	
Ι	Dyes and Intermediate	15	
	1.1. Classification and synthesis of important dye intermediates by Using		
	nitration, sulphonation, diazotization reactions.		
	1.2.Commercial processes for azo-dyes, reactive dyes, optical brighteners,		
	Thermal sensitive dyes, dispersed dyes and reactive dyes.		
II	A) Synthesis and applications of perfumery, B) Synthesis and Applications of pharmaceuticals and C) Sugar based chemicals.	15	
	A) Synthesis and applications of perfumery		
	2-Phenylethanol, vanillin and other food flavours, synthetic		
	musk and ionones.		
	B) Synthesis and applications of pharmaceuticals:		
	Beridryl, Oxyphenbutazone & Ethambutol		
	C)Sugar based chemicals: Manufacture of furfural from bagasse,		
	Citric acid from molasses, acetic acid, butane aldehyde &butyl		
	acetate from ethanol	4.5	
111	Agrochemicals	15	
	A. Carbamate pesticides: Introduction and synthesis of carbaryl,		
	D. Organ anhaanhama nastiaidaa: Malathian manaanatanhaa		
	B. Organophosphorus pesticides: Malatinon, monocrotophos,		
	C Natural and synthetic pyrethroids: Isolation and structures of		
	natural allethrin fenvalerate cypermethrin		
	D.Plant growth regulators: General survey and synthesis of simple		
	compounds and applications.		
	E Insect repellents: General survey synthesis and applications		

		F. Juvenile harmone: introduction & structures JHA importance	
		synthesis	
		G.Pheromones: introduction, examples, and importance in IPM.	
		Synthesis of juvabione bombykol, grandisol and disparlure	
Γ	V	Polymers	15
		4.1 Mechanism of polymerization.	
		4.2 Study of polyesters polyamides, PVC, polystyrene, polyvinyl acetate	e
		and polyvinyl alcohol, polyethenes, viscose rayon, synthesis o	f
		polyethylene, polypropylene. Synthetic rubbers: Styrene-butadiene	,
		butyl poly isoprene, phenol formaldehyde resin. Plasticizers and anti	-
		oxidants for polymers, natural polymers: starch and cellulose	
Cours	se Ou	tcomes: Student should able to:-	
1.	Und	erstand formation of Dyes and Intermediates with its applications.	
2.	Den	nonstrate the classification, synthesis and analysis of perfumery, pharn	naceuticals and
	suga	ir based chemicals.	
3.	Illus	trate fundamental mode of action, structure and synthesis of agrochemical	8
4.	Exp	lain the polymers with respect to synthesis and applications.	
Refer	ences	:-	
1	Allan	ColorChemistry [unit-]]	
21	K Vo	nkataraman, Chamistry of Synthetic Dyes Vol. 1 to7[unit I]	
2.1	N. VC	nikatarahan, Chemistry of Synthetic Dyes Vol- 1 to/[unit-1]	
3.7	Abran	art, Dyes &theirintermediates.[unit-1]	
4.1	N. N.	Melikov, The Chemistry of Pesticides and formulations.[unit-III]	
5.1	K. H.	Buchel, Chemistry of Pesticides. [Unit-III]	
6. I	R. Cle	emlyn, Pesticides.[unit-III]	
7.1	K. H.	Buchel, Chemistry of Pesticides.[Unit-III]	
8. I	H. R.	Alcock and F. W. Lambe, Contemporary PolymerChemistry.[unit-IV]	
9. J	J. M.	G. Cowie, Blackie, Physics & Chemistry of Polymers. [unit-IV]	
10.	. P. H	. Groggins, Unit Processes in OrganicSynthesis.[unit-I]	
11	R R	iollot& P. V. Wells PerfumaryTechnology [unit-II]	
12	. D. D М 4	Ash & L Ash A formulary of Cosmetic Preparations [Unit_II]	
12.	. IVI. 7	Asin & I. Asin, A formularly of Cosmetter reparations.[Onit-11]	
Credit	ts		TT
4		MOCT 544-E-II: Environmental Chemistry	Hours
		•	60
Course	Obj	ectives: Student will be able to:-	
1.	Stud	y basic principles of environmental chemistry.	
2.	Acq	uire knowledge of Atmosphere, Hydrosphere and Lithosphere.	
3.	Gras	p concept chemical toxicology.	
4.	Stud	y Air Pollution, Water Pollution and water treatment.	
Unit	No	Title and Syllabus	Hours
om	110	The and Synabus	allotted
Ι		Introduction to Environmental Chemistry	15
		1.1.Concept and scope of environmental chemistry, Environmental	
		terminology and nomenclatures	

	1.2.Environmental segments, The natural cycles of environment	
	(Hydrological, Oxygen, Nitrogen)	
II	Atmosphere, Hydrosphere and Lithosphere	15
	2.1.Atmosphere: Regions of the atmosphere, Reactions in atmospheric	
	chemistry, Earth's radiation balance, Particles, ion and radicals in	
	atmosphere.	
	2.2. Chemistry of ozone layer. Hydrosphere: Complexation in natural	
	water and waste-water.	
	2.3. Micro-organisms in aquatic chemical reactions, Eutrophication,	
	Microbiology mediated redox reactions. Lithosphere: Inorganic and	
	organic components in soil, acid-base and ion-exchange reactions in	
	soil, micro and macronutrients, nitrogen pathways and NPK in soil.	
III	Chemical Toxicology	15
	3.1.Toxic chemicals in the environments, Impact of toxic chemicals on enzymes	
	3.2. Biochemical effects of arsenic, cadmium, lead, mercury, carbon	
	monoxide, nitrogen oxides, sulphur oxides.	
IV	Air Pollution, Water Pollution and water treatment	15
	A.Air Pollution Particulates, Aerosols, SO_x , NO_x , CO_x and	
	hydrocarbon, Photochemical smog, Air-quality standards	
	B.Water Pollution and water treatment.	
	Water-quality parameters and standards: physical and chemical	
	parameters, Dissolved oxygen, BOD, COD, Total organic	
	carbon, Total nitrogen, Total sulfur, Total phosphorus and	
	Chlorine, Chemical speciation (Pb, As, Hg)	
Course	Outcomes: Student should be able to:-	
1.	Illustrate Concept and scope of environmental chemistry.	
2.	Demonstrate Atmosphere, Hydrosphere and Lithosphere	
3.	Explain the chemical toxicology.	
4.	Elucidate causes and treatments of air and water pollution.	
Referen	ICES:-	
1.	Peter O. Warner, Analysis of Air Pollutants, 1st Edition (1996), John Wiley, N York. [All units]	ew
2.	S.M. Khopkar, Environmental Pollution Analysis, 1st Edition (1993), Wiley Es Ltd., New Delhi. [Allunits]	stern
3.	S.K. Banerji, Environmental Chemistry, 1st Edition (1993), Prentice-Hall of In Delhi.[All units]	dia, New

Credits 4	MOCT-545:On job Training	Hours 120
	OJT Will provide the opportunities for internship with local/regional	
	industries, business organization, health and allied areas, local government,	
	etc. So that undergoes 4 Credit work-based learning /OJT/Internship.	

Credits 2	MOCP-546: PRACTICAL COURSE – VII: LAB – VII	Hours 60
Course Objectives: Student will be able to:-		
1. Study the three-step preparation of important organic compounds.		
2. Carry out multicomponent synthesis.		
3. Study the applications of Sandmeyer reaction.		
4. Understand Sulphur and Nitrogen estimation Procegure		
	Title and Syllabus	
	MOCP-546 Organic Chemistry Practical VII(Lab-VII)	
	A. Three stage organic preparations	
	1. Preparation of Anthranilic acid.	
	2. Preparatin of p-Amino benzoic acid.	
	3. Preparation of p-Chloro nitrobenzene by Sandmeyer reaction.	
	4. Preparation of p- Iodo nitrobenzene by Sandmeyer reaction.	
	5. Any other suitable experiment may be added	
B.Estimation of Sulphur and Nitrogen.		
C.Green methods of synthesis (Microwave and ultrasonic technique)		
	A.Synthesis of Schiff's base from aniline and p-anisaldehyde in the	
	presence of lime juice.	
	B. Synthesis of coumarin by Knoevenagel reaction usin salicyl	
	C Synthesis of dihydropyrimidones. Biginelli reaction: acid	
	catalyzed three component reaction between vanillin	
	ethylacetoacetate and thiourea.	
	D.Synthesis of acetanilide from aniline.	
Course Outcome: Student should be able to:-		
1. Carry out purification of organic compounds by recrystallization method		
2. Demonstrate the lab synthesis of three step preparations of different reactions.		
3. Apply sandmeyer reaction in the synthesis of important products.		
4. Identify Nitrogen and sulphur percentage from the unknown sample.		
References:-		
1. A. I. Vogel, Textbook of Practical Organic Chemistry.		
2. Mann & Saunders, Practical Organic Chemistry.		
3. H.T. Clarke, A Handbook of Quantitative & Qualitative Analysis.Blat, Organic Synthesis		
Collective Volumes. Education(UnitIII)		
4. A. I. Vogel, 1980 A Text book of Qualitative Inorganic Analysis-Longman Sc& Tech,		
(Uniti,II,IV)		